Math 217 Fall 2025 Quiz 8 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function $T: V \to W$ such that for all $\mathbf{u}, \mathbf{v} \in V$ and all scalars a, b, b, c

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v}).$$

Equivalently, $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and $T(a\mathbf{u}) = aT(\mathbf{u})$ for all $\mathbf{u}, \mathbf{v} \in V$ and scalars a.

(b) A vector is ...

Solution: An element of a vector space. More precisely, if V is a vector space over a field \mathbb{F} , any $v \in V$ is called a vector (e.g. in \mathbb{R}^n , a vector is an ordered n-tuple with the usual addition and scalar multiplication; in \mathcal{P}_n , a vector is a polynomial of degree at most n, etc.).

2. Suppose $n, m \in \mathbb{Z}_{>0}$. Recall that $\mathbb{R}^{n \times m}$ denotes the set of $n \times m$ matrices with entries in \mathbb{R} . We define $\vec{0} \in \mathbb{R}^{n \times m}$ to be the n by m matrix for which all entries are zero. Show

VS-4: For all $A \in \mathbb{R}^{n \times m}$ there is a unique element $-A \in \mathbb{R}^{n \times m}$ such that $A + (-A) = \vec{0}$.

Solution: Existence. Define -A entrywise by $(-A)_{ij} = -a_{ij}$. Then $(A + (-A))_{ij} = a_{ij} + (-a_{ij}) = 0$ for all i, j, hence $A + (-A) = \vec{0}$.

Uniqueness. If $B \in \mathbb{R}^{n \times m}$ also satisfies $A + B = \vec{0}$, then $B = \vec{0} - A = -A$ (entrywise: $b_{ij} = -a_{ij}$). Therefore the additive inverse is unique.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose V is a vector space and $T: V \to V$ and $S: V \to V$ are linear transformations. The compositions $S \circ T$ and $T \circ S$ are linear maps from V to V and $S \circ T = T \circ S$.

Solution: False. While $S \circ T$ and $T \circ S$ are always linear, they need not be equal (linear maps need not commute). For a counterexample, take

$$T(x,y) = (y,0)^T$$
, $S(x,y)^T = (0,x)^T$ on \mathbb{R}^2 .

Then $(S \circ T)(x, y) = S(y, 0)^T = (0, y)^T$ while $(T \circ S)(x, y)^T = T(0, x)^T = (x, 0)^T$, so $S \circ T \neq T \circ S$.

(b) Suppose $n \in \mathbb{Z}_{>0}$. If A_1, \ldots, A_k are invertible $n \times n$ matrices, then $(A_1 \cdots A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \cdots A_1^{-1}$.

Solution: True. Base case: For k = 2, $(A_1 A_2)^{-1} = A_2^{-1} A_1^{-1}$.

Induction Hypothesis: $(A_1, \ldots, A_{k-1})^{-1} = A_{k-1}^{-1} \ldots A_1^{-1}$. The general statement follows from the base case and induction hypothesis:

$$(A_1 \cdots A_k)^{-1} = ((A_1 \cdots A_{k-1})A_k)^{-1} = A_k^{-1}(A_1 \cdots A_{k-1})^{-1} = A_k^{-1} \cdots A_1^{-1}.$$